Evolving strategies for single-celled organisms in multi-nutrient environments
نویسندگان
چکیده
When micro-organisms are in environments with multiple nutrients, they often preferentially utilise one first. A second is only utilised once the first is exhausted. Such a two-phase growth pattern is known as diauxic growth. Experimentally, this manifests itself through two distinct exponential growth phases separated by a lag phase of arrested growth. The duration of the lag phase can be quite substantial. From an evolutionary point of view the existence of a lag phase is somewhat puzzling because it implies a substantial loss of growth opportunity. Mutants with shorter lag phases would be prone to outcompete those with longer phases. Yet in nature, diauxic growth with lag phases appears to be a robust phenomenon. We introduce a model of the evolution of diauxic growth that captures the basic interactions regulating it in bacteria. We observe its evolution without a lag phase. We conclude that the lag phase is an adaptation that is only beneficial when fitness is averaged over a large number of environments.
منابع مشابه
Aging yeast gain a competitive advantage on non‐optimal carbon sources
Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged...
متن کاملLife histories and the evolution of aging in bacteria and other single-celled organisms.
The disposable soma theory of aging was developed to explore how differences in lifespans and aging rates could be linked to life history trade-offs. Although generally applied for multicellular organisms, it is also useful for exploring life history strategies of single-celled organisms such as bacteria. Motivated by recent research of aging in E. coli, we explore the effects of aging on the f...
متن کاملThe Biological Productivity of the Ocean
Ocean productivity largely refers to the production of organic matter by “phytoplankton,” plants suspended in the ocean, most of which are single-celled. Phytoplankton are “photoautotrophs,” harvesting light to convert inorganic to organic carbon, and they supply this organic carbon to diverse “heterotrophs,” organisms that obtain their energy solely from the respiration of organic matter. Open...
متن کاملEvolving the Program for a Cell: From French Flags to Boolean Circuits
The development of an entire organism from a single cell is one of the most profound and awe inspiring phenomena in the whole of the natural world. The complexity of living systems itself dwarfs anything that man has produced. This is all the more the case for the processes that lead to these intricate systems. In each phase of the development of a multi-cellular being, this living system has t...
متن کاملLife in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.
Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophi...
متن کامل